

UNCLASSIFIED

By
Kevin Boice
Anthony Leo
Joseph Lee

John Paulson, Jr.
Matt Skalny
Ty Valascho

TARDEC
 --- TECHNICAL REPORT ---

No. 21320

Baseline Field Testing of
BB-2590 Lithium-Ion

Batteries using an
iRobot FasTac 510 Robot

U.S. Army
Tank Automotive Research, Development, and Engineering Center
Detroit Arsenal
Warren, Michigan 48397-5000

UNCLASSIFIED: Dist A. Approved for public release

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
17 SEP 2010

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Baseline Field Testing of BB-2590 Lithium-Ion Batteries using an
iRobot FasTac 510 Robot

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Kevin Boice; Anthony Leo; Joseph Lee; John Paulson, Jr.; Matt
Skalny; Ty Valascho

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army, Tank Automotive Research Development and Engineering
Command (TARDEC) Warren, MI 48397

8. PERFORMING ORGANIZATION REPORT
NUMBER
21340RC

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army, Tank Automotive Research Development and Engineering
Command (TARDEC) Warren, MI 48397

10. SPONSOR/MONITOR’S ACRONYM(S)
TACOM/TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
21340RC

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The views, opinion, and/or findings contained in this report are those of the authors and should not be
construed as an Official Department of the Army position, policy, or decision, unless so designated by other
documents., The original document contains color images.

14. ABSTRACT
Field testing of the 6.8 Ah BB-2590 Li-Ion Battery was performed to record and analyze power
consumption and energy management characteristics as a baseline for future improvements. The testing
was performed using an iRobot FasTac 510 robotic platform, using Mission 1 from the document Small
Robot Mission Profiles V09."

15. SUBJECT TERMS
BB-2590, robot, battery, power, baseline

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

SAR

18. NUMBER
OF PAGES

38

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

UNCLASSIFIED

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN
YOUR FORM TO THE ABOVE ADDRESS.

17-09-2010
1. REPORT DATE (DD-MM-YYYY)

Technical
2. REPORT TYPE

 04/2010 – 07/2010
3. DATES COVERED (From - To)

Baseline Field Testing of BB-2590 Lithium-Ion Batteries using an
4. TITLE AND SUBTITLE

iRobot FasTac 510 Robot

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kevin Boice, Anthony Leo, Joseph Lee, John Paulson, Jr., Matt Skalny, and Ty
Valascho

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army, Tank Automotive Research Development and Engineering Command
(TARDEC)
Warren, MI 48397

8. PERFORMING ORGANIZATION REPORT

 NUMBER

US Army, Tank Automotive Research Development and Engineering Command
(TARDEC)

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Warren, MI 48397

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

The views, opinion, and/or findings contained in this report are those of the authors and should not be construed as an
13. SUPPLEMENTARY NOTES

Official Department of the Army position, policy, or decision, unless so designated by other documents.

Field testing of the 6.8 Ah BB-2590 Li-Ion Battery was performed to record and analyze power consumption and energy
management characteristics as a baseline for future improvements. The testing was performed using an iRobot FasTac 510
robotic platform, using Mission 1 from the document “Small Robot Mission Profiles V09.”

14. ABSTRACT

BB-2590, robot, battery, power, baseline
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
UNCLAS DIST A

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Ty Valascho

DIST A
a. REPORT b. ABSTRACT

DIST A DIST A
c. THIS PAGE A

33

(586) 282-0681
19b. TELEPHONE NUMBER (include area code)

 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

Table of Contents
1. Introduction ... 1

2. Purpose .. 3

3. Methodology ... 4

4. Analysis of the Data .. 6

5. Results ... 8

Appendix A. Mission 1 from “Small Robot Mission Profiles V09” ... 17

Appendix B. Detailed Testing Procedure .. 19

Appendix C. Python Scripts and Setup Procedure for Logging Data using iRobot Aware 2.0 .. 21

Appendix D. Sample Test Sheet ... 28

Appendix E. CSV Data File Processing Macro .. 29

UNCLASSIFIED
Page 1 of 35

1. INTRODUCTION

Robots are frequently used by the Army for interrogation of Improvised Explosive Devices (IEDs) and
occasionally for surveillance. These important roles help protect soldiers. Unfortunately, one significant
limitation of robotics is battery life, especially in man-portable or “small” robots. If battery life can be
extended, more possible missions could be realized. A baseline testing profile was created and measurements
of voltage and current were taken while running a robot through this profile. This testing was performed on an
iRobot FasTac 510 robot, using the latest approved BB-2590 Li-Ion batteries in April, May, and June 2010.
Both products are currently used in theater by soldiers and provide a good baseline to measure future
enhancements against. Another robotic vehicle, the QinetiQ TALON 4 robot is also used in theater and will be
the subject of the next round of battery testing.

The BB 2590 Lithium Ion battery (National Stock Number 6140-01-490-4316), shown in Figure 1, is a
rechargeable battery used throughout the Army to power many electronic devices, most commonly handheld
radios. At 1.4 kg, its size and weight are such that it can be carried by the soldier in the field, including spares.

Figure 1 – Muddy BB-2590 Batteries after Field Testing

This battery is the preferred power source for robots used in the field, because of its durability, ubiquity, and
performance characteristics. The US Army, through the Robotic Systems Joint Program Office (RS JPO) is
actively working towards the goal of upgrading all man-portable military robots to use the BB-2590 battery.
One such robot is the iRobot FasTac 510, photographed using two BB-2590 batteries as its power source in
Figure 2.

UNCLASSIFIED
Page 2 of 35

Figure 2 – iRobot FasTac 510 Powered by two BB-2590 Li-Ion Batteries

As technologies are implemented in either batteries or robotic platforms to extend mission life, it is anticipated
that the methodology and results contained in this report could be used as a baseline to measure the degree of
improvement.

UNCLASSIFIED
Page 3 of 35

2. PURPOSE
The goal of this testing is to record and analyze the iRobot FasTac 510’s energy-consumption and performance
under a simulated “real world” mission. This simulated mission is designed to test and measure the robot’s
energy consumption on the various terrains experienced on deployment.

This report documents the findings from the baseline current and voltage measurements. It is intended to be
used as a basis of comparison for improvements in the areas of power consumption and energy management for
small robots.

The projected end-state is to have a robot with a longer lifespan that can meet the rigorous demands of the
deployed soldier.

UNCLASSIFIED
Page 4 of 35

3. METHODOLOGY
The test runs were performed while logging data using custom python scripts that subscribe to data already
available in the iRobot Aware 2.0 software of the FasTac 510. These custom scripts and modifications were
made both on the robot and the Operator Control Unit (OCU). The data logging configuration is depicted in
Figure 3, and described in more detail in Appendix C.

Figure 3 – Test Logging Configuration

Mission 1 from “Small Robot Mission Profiles V09” was used as the test plan for this work and is provided in
Appendix A of this document. Appendix B provides additional testing details from this specific round of
testing – procedures and best practices.

The test profile was run 3 times at each vehicle speed setting; creep, normal, and fast using two BB-2590 6.8
Ah Li-Ion batteries. Each test run is broken up into 6 subtests; Pea Gravel, Sand, Crushed Concrete, Hill,
Obstacle Course, and Manipulator. It should be noted that the test site did not consist of the full length
distances required for Mission 1, and the robot was turned around manually during the testing. For example,
the Pea Gravel test calls for 100 m, but the test site only had 50 m of pea gravel.

An overhead view of the test site is provided in Figure 4.

Test Laptop Operator Control
Unit

iRobot 510 FasTac

Time (s) =
0.125
voltage (v) =
26.213
current (A) =
4.56

Time (s) =
0.125
voltage (v) =
26.213
current (A) =
4.56

Time (s) =
0.125
voltage (v) =
26.213
current (A) =
4.56

Time (s) =
0.125
voltage (v) =
26.213
current (A) =
4.56

Robot continually
transmits real-time

data after power up.

User starts a new file at
the start of each test.
The OCU writes data

into the new file.

When test is over,
the data files are
transferred to a

laptop.

batt_volt = 25.987

batt_volt = 26.213

UNCLASSIFIED
Page 5 of 35

Figure 4 – Overhead View of Test Site

OCU Station &
Manipulator
Pad

Crushed
Concrete

Sand

Pea Gravel

Hill

Obstacle
Course

UNCLASSIFIED
Page 6 of 35

4. ANALYSIS OF THE DATA
The data logging system used for this testing creates comma separated values (csv) files with data values
captured every 250 ms. These files do not have any header information, which means the file is all data values
with no explanation as to what each value represents. A custom MS Excel Macro was created to process the
data files and add the header information, the text of which is provided in Appendix E. After the raw csv files
were processed, commercial software was used to analyze the data.

It must be noted that the data gathered during this testing came directly from the Aware 2.0 system. In some
cases this data does not accurately represent the true hardware measurement. In particular, the Aware 2.0
values for battery voltage and power are made after the voltage regulator in the FasTac 510. This presents two
issues with the measurements. The first is that, according to the manufacturer, the regulator is about 95%
efficient resulting in some loss in the measurements. The second is the existence of the regulator itself, the
function of which is to filter large transients and spikes from the rest of the system. The data therefore is
regulated power measurements, which does not truly represent the raw values from the batteries themselves.
The difference between the two measurements was examined by gathering data using both an external data
logger connected to the battery output pins and the Aware 2.0 system over the same test run. From this
comparison, it was determined that the Aware 2.0 values for the movement actuators - Left Track Current and
Right Track Current – are closer to the measured values taken at the batteries. Therefore, all subtests except the
Manipulator subtest used the Track Current values. The Manipulator subtest does not involve movement, so the
post-processed Aware 2.0 values for battery voltage and power were used in this analysis.

Another issue that was discovered during testing was the idle current consumption. When the FasTac 510 is
standing idle, it was found to consume an average current of 1.39 A to keep the processors, sensors, and system
components powered. This means that during the subtests where the robot was manually turned around, it was
consuming energy which should not be included in the analysis. A threshold was used to filter these time
periods out of the data. It involved creation of a “Movement Bit”, which was used to represent whether the
robot was being driven or was being manually turned around in the middle of a test. The Movement Bit is
determined by comparing the xPosition and yPosition values every 250 ms with their previous values. If either
the xPosition or yPosition changed by more than 0.02 from the previous measurement, the robot was considered
“moving” and the Movement Bit was set to one. Otherwise, it was zero. In this way, only the time when the
robot was moving was used for the final calculations. In addition, the periods of “non-movement” were used to
calculate the idle current consumption value noted earlier.

A graph showing the Track Current values vs. the Battery Current values and the Movement Bit is provided in
Figure 5 as an example. The value “Batt’y Current Measurements” is the sum of currents measured at the
LeftFront battery and LeftRear battery. “Track Current Measurements” is the sum of currents measured at both
track actuators. The Movement Bit is set to one when the platform is running the test and zero when idle. The
10 seconds in the middle of the test is where the platform was stopped after reaching the end of the sand terrain.
This was only half the distance required for the test, though, so the platform was manually turned around at this
point in time.

UNCLASSIFIED
Page 7 of 35

Figure 5 - Test 4.3 Sand Subtest Current Comparison

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90

Cu
rr

en
t (

A
)

Elapsed Time (seconds)

Movement Bit

Batt'y Current Measurements (A)

Track Current Measurements (A)

Robot manually
turned around
here

Robot being
driven here

UNCLASSIFIED
Page 8 of 35

5. RESULTS
Table 1 presents the average current consumption during the battery field testing performed between April and
June, 2010. All current data is the sum of Right Track Current and Left Track Current measurements, except
the Manipulator subtest. The Manipulator subtest is the sum of the calculated LeftFront Battery Current and
LeftRear Battery Current.

Table 1 – Summary of Average Current Consumption during Battery Field Test (Amps)

 Robot Speed Setting

Creep Normal Fast Avg

Std
Dev

Su
bt

es
t

Pea Gravel 4.74 5.34 6.84 5.64 1.08
Sand 5.04 5.42 6.70 5.72 0.87

Crushed Concrete 5.34 6.65 8.30 6.76 1.48
Hill 5.27 6.38 7.99 6.55 1.37

Obstacle Course 4.58 5.97 7.99 6.18 1.71
Manipulator 3.01 2.82 2.94 2.92 0.10

Avg 4.66 5.43 6.79 5.63 1.10

As expected, slower speed settings consume less average current.

The average time each test and subtest took to perform is provided in Table 2. These values are based upon the
condition of the Movement Bit, except the Manipulator subtest. That is, the Time of Test shown in this table is
only the time that the robot was moving during the test – it does not include idle time. In the case of the
Manipulator test, it is a timed test of exactly 5 minutes and the Movement Bit never goes to one as the platform
is stationary during the entire test.

Table 2 – Average Time of Test during Battery Field Test (seconds)

 Robot Speed Setting
 Creep Normal Fast Avg

Su
bt

es
t

Pea Gravel 571.5 102.7 40.0 238.1
Sand 341.9 60.1 25.3 142.4

Crushed Concrete 112.8 20.1 9.1 47.3
Hill 549.9 103.0 51.3 234.7

Obstacle Course 112.5 21.9 13.9 49.4
Manipulator 305.8 306.3 305.2 305.7

 Total 1994.4 614.0 444.7 169.6

In Figure 6, an “idealized” plot of regulated battery voltage versus time for a complete test run is presented.
This plot is a combination of the subtest recordings that are closest to the average current consumption of each
subtest. It gives a general representation of the supply voltage profile that any equipment attached to a FasTac
510 can expect.

UNCLASSIFIED
Page 9 of 35

Figure 6 – Idealized Combination of Average Voltage Plots

Selected graphs of the current consumption over time for each subtest are presented in Figure 7 through Figure
12. These current traces are from the same specific subtests as the combined subtest plots of voltage in Figure
6. That is, the Pea Gravel subtest from test run 4.3 was used for both the Pea Gravel voltage plot in Figure 6
and the current consumption graph in Figure 7.

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

0 100 200 300 400 500 600 700 800

M
ov

em
en

t B
it

V
ol

ta
ge

 (V
)

Elapsed Time (seconds)

LF/LR Battery Voltage

Movement Bit
1

0

Pea Gravel Sand Crushed
Concrete

Hill Obstacle
Course

Manipulator

UNCLASSIFIED
Page 10 of 35

Figure 7 - Test 4.3 Pea Gravel Subtest Current Consumption

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

Cu
rr

en
t (

A
)

Elapsed Time (seconds)

Movement Bit

Track Current Measurements (A)

UNCLASSIFIED
Page 11 of 35

Figure 8 - Test 4.2 Sand Subtest Current Consumption

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

Cu
rr

en
t (

A
)

Elapsed Time (second)

Movement Bit

Track Current Measurements (A)

UNCLASSIFIED
Page 12 of 35

Figure 9 - Test 4.3 Crushed Concrete Subtest Current Consumption

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30

Cu
rr

en
t (

A
)

Elapsed Time (seconds)

Movement Bit

Track Current Measurements (A)

UNCLASSIFIED
Page 13 of 35

Figure 10 - Test 4.3 Hill Subtest Current Consumption

In Figure 10, there are 10 distinct movement events in the subtest that correspond to the five up and down
segments of the Hill subtest. Current consumption is much higher while climbing the hill, so it can be deduced
from the graph that the robot is driven up the hill first, then down, with this cycle repeated until the correct
distance was driven.

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Cu
rr

en
t (

A
)

Elapsed Time (seconds)

Movement Bit

Track Current Measurements (A)

UNCLASSIFIED
Page 14 of 35

Figure 11 - Test 4.2 Obstacle Course Subtest Current Consumption

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Cu
rr

en
t (

A
)

Elapsed Time (seconds)

Movement Bit

Track Current Measurements (A)

UNCLASSIFIED
Page 15 of 35

Figure 12 – Test 4.3 Manipulator Subtest Current Consumption

It should be noted that in Figure 12, the LeftFront and LeftRear Battery Currents are plotted, not the track
currents. As explained previously, this is because the Manipulator Subtest does not involve movement, so the
track current measurements were not used.

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

Cu
rr

ne
t (

A
)

Elapsed Time (seconds)

Batt’y Current Measurements (A)

UNCLASSIFIED
Page 16 of 35

Disclaimer for Publications
**Disclaimer: Reference herein to any specific commercial company, product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the Department of the
Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the
United States Government or the DoA, and shall not be used for advertising or product endorsement
purposes.**

UNCLASSIFIED
Page 17 of 35

APPENDIX A. MISSION 1 FROM “SMALL ROBOT MISSION PROFILES V09”

Mission 1

Background
This mission profile combines the basic tasks of the following in-theater missions:

• Short-range Surveillance
• Short-range Reconnaissance
• Improvised Explosive Device (IED) investigation
• Checkpoint inspection
• Route clearance
• Engineering detonation in place

These are all currently Line of Sight (LOS) missions or teleoperated applications.

Profile
All traveling is done at an average speed of 4 kph, while transmitting full color video back to the OCU. If run
continuously, this entire test should be completed within 40 minutes. It is acceptable to run the test non-continuously
(piecemeal), but each step should be kept intact and the power source(s) must not be replenished between steps.

OCU shall be kept at standoff distance of approximately 100 m from the robot during the test.

Ambient temperature of 25⁰ C, +/- 5⁰ C, clear conditions, less than 10 kph wind.

1. Robot picks up a 2.0 kg weight and carries it.
2. Robot travels 100 m over a pea gravel road gravel surface.
3. Robot travels 60 m on loose, sandy surface.
4. Robot travels 20 m over rocks or crushed concrete of an average size of approximately 75 mm diameter.
5. Robot travels 10 m uphill on grass or dirt at 30% slope. The total height will be approximately 4.5 m.
6. Robot travels 10 m downhill (negative obstacle) on grass at 30% slope. The total depth will be approximately 4.5

m.
7. Repeat steps 5 and 6 four more times for a total of five times (100 m of total distance traveled).
8. Robot drops 2.0 kg weight.
9. Robot travels 20 m over an asphalt or concrete surface and climbs over two obstacles 0.1 m in height and

spaced 9 m apart and approximately 0.2 m in width, as seen in
10. Table 3.

Table 3: Mission 1 Step 7 Obstacle Diagram

11. Robot manipulates arm for 5 minutes by continuously executing set poses, if available, or some repeatable

motion sequences otherwise.

9 m

10 m 10 m

0.2 m 0.2 m

0.1 m

UNCLASSIFIED
Page 18 of 35

UNCLASSIFIED
Page 19 of 35

APPENDIX B. DETAILED TESTING PROCEDURE FOR IROBOT FASTAC 510

Equipment

• FasTac 510 robot
• OCU
• Two BB-2590 6.8 Ah batteries, Nat’l Stock Number 6140-01-490-4316
• Test Laptop with interface to the OCU, i.e. ethernet and PuTTY
• 2.0 kg test weight
• Multiple hard copies of Test Sheet
• Generator (for OCU and laptop)
• Surveyor’s Wheel
• Handheld 2-Way Radios
• Stopwatch

Procedures
Once the test site is set up, place a station with the OCU and Test Laptop near the test tracks. Before running
any tests, ensure that RF communication is maintained between the robot and the OCU at every test location.
This may require that every test area have Line of Sight to the OCU station.

There are three distinct job responsibilities for this test. One person is designated the robot Driver, and is
responsible for starting and stopping the test log file and also driving the robot. A second person, the Observer,
records general observations during testing, maintains the Test Sheet, and verifies that log files have been
stopped and started correctly on the OCU from the Test Laptop. In addition, the Observer operates a 2-way
handheld radio to communicate with the third person, the Spotter. The Spotter will carry a handheld 2-way
radio and walk with the robot during the test.

Before putting the batteries in the robot, the Observer fill out the test sheet, supplied in

UNCLASSIFIED
Page 20 of 35

Appendix D. The iRobot OCU serial number is located on a sticker on the bottom left hand corner of the
keyboard. The battery model and serial number are located in yellow on the side of the battery. The five digit
serial number of the robot is located next to the power button, in the rear by the handle.

Connect the robot to the OCU, after turning both on. Push and hold the robot power button until the green light
turns on. The OCU starts up like a normal laptop. Once at the main menu, enter the FasTac 510 serial number to
connect the OCU by wireless. If there is any trouble powering up or connecting the OCU or robot, refer to the
iRobot FasTac 510 Operators Manual.

Verify that the Test Laptop and OCU are connected and that PuTTY is running on the Test Laptop as an
interface to the Linux file system.

For portions of the test, the robot carries a 2.0 kg (4.4 lb) test weight. It was found during testing that a sturdy
plastic jug with a handle works very well as the test weight. This jug is filled with gravel or rocks to the desired
weight. Small holes frequently appear in the jug during testing, so water and sand do not work as well as larger
materials. Examples of test weights are provided in Figure 13.

Figure 13 – Test Weights Used for Battery Field Testing

Have the robot carry the weight with its gripper. Position the driving cameras so that the weight does not
obscure the driver’s vision. It is also preferred to position the weight and arm to change the robot’s center of
gravity as little as possible. The preferred driving position for the FasTac 510 is the “Pick Up or Place Objects”
pose.

For each subtest, a new test file should be started and the name of this file recorded on the Test Sheet. It is
crucial that the file names are correctly recorded on the Test Sheet, because this is the only place where the
correlation between log file and subtest is made. If an error occurs during any part of the subtest, simply stop
that log file, record that the file is unusable on the test sheet, and restart that subtest with a new log. It is useful
to have the Spotter tell the driver when distance markers have been reached, as this can be difficult for the
Driver to discern.

The manipulator subtest can be performed on any flat surface. A convenient location is close to the OCU
station. Be sure to record any position failures or problems with the actuators during the test.
When one complete test run is finished – all six subtests - the log files should be transferred to the Test Laptop
for distribution and analysis.

UNCLASSIFIED
Page 21 of 35

APPENDIX C. PYTHON SCRIPTS AND SETUP PROCEDURE FOR LOGGING DATA USING
IROBOT AWARE 2.0

Equipment

• FasTac 510 robot with Aware 2.0 and Integrator Edition version 3.4
• FasTac OCU or Other Logging Computer
• Established connection between FasTac 510 robot and OCU/Other Logging Computer

Procedures

Overview
There are two python scripts needed for logging battery data from the PackBot FasTac 510 (robot) to a remote
computer. The remote computer can be any computer that is connected via the wireless or wired link to the
robot, but for the purposes of this test, an Aware 2.0 iRobot OCU was used. A script called fullbatterychar.py
ran on the robot collecting battery, orientation, commanded motion, and motor information. A script called
ocubatterylogger.py ran on the OCU and logged information that was sent by the fullbatterychar.py script. The
robot is running a Linux variant.

Setting Up the PackBot FasTac 510
There are two steps required to properly set the PackBot FasTac 510 (robot) for logging information required
for battery testing. First, the fullbatterychar.py python script must be installed on the robot. This is done by
placing the script (see end of this appendix for full script) in a location on the robot that it will be run from and
changing the TARGET_IP value within the fullbatterychar.py script. For this test, the location
/opt/tardec/scripts was used, but any location with proper permissions is acceptable. The TARGET_IP variable
must be set to the IP address of the remote machine that the ocubatterylogger.py script is running on. Make
sure that the Integrator Edition version on the robot is 3.4 – the script may not function properly on
other versions due to discrepancies in publication names. After the script is installed in the desired location,
it must be started by running the command “python /opt/tardec/scripts/fullbatterychar.py &” from the shell
prompt, substituting “/opt/tardec/scripts/” with the location the script is in if necessary. Alternatively, the script
can be started automatically by adding the line “python /opt/tardec/scripts/fullbatterychar.py” to the end of the
“startAll()” function in the /etc/rc.d/init.d/aware2 file. This will start the script after all Aware2 processes have
been started.

Setting Up the Remote (Logging) Computer
The logging computer can be any computer with python installed. For this test, the logger script was placed on
the iRobot Aware 2.0 OCU computer, but in general the script can be run on any computer that has a connection
to the robot computer and has an IP address equal to that specified in the TARGET_IP variable in the
fullbatterychar.py script running on the robot. If running on a computer other than the iRobot Aware 2.0 OCU,
simply place the ocubatterylogger.py in the desired location and run it through a python interpreter – the script
will listen for UDP packets coming from the fullbatterychar.py script on port 20000. The logger can be run
through the python interpreter as follows (this can be made into a separate script):

>>> import ocubatterylogger
>>> logger = ocubatterylogger.OcuBatteryLogger()
>>> logger.start()
… go until logging done …
>>> logger.stop() or ctrl-c process

 The packets are in a comma delineated string format, and are logged directly to a file called battery-
[timestamp].csv in the directory “/home/tardec/”. The file location and naming scheme can be changed in the

UNCLASSIFIED
Page 22 of 35

ocubatterylogger.py script by modifying the line filename = (‘/home/tardec/battery-‘ + time.asctime() + ‘.csv’)
to reflect the desired location and naming convenction for storing the csv files.

The ocubatterylogger.py logger can also be run by clicking on a custom created button on the iRobot Aware 2.0
OCU screen. To enable this capability, three steps need to be taken on the iRobot Aware 2.0 OCU:

1. Place the ocubatterylogger.py script in the /opt/irobot/lib/python2.5/site-packages/cpOcuApp/fastac
folder.

2. Modify the /opt/irobot/lib/python2.5/site-packages/cpOcuApp/ocuApp/MainMenuBase.py file to add a
new button to turn the battery logger on and off.

3. Modify the /opt/irobot/lib/python2.5/site-packages/cpOcuApp/FasTacSessionScreen.py file to create and
start/stop the battery logger thread when a button is pressed.

In this way, the same OCU that is used to control the robot can also be used to do the logging without having to
manually start and stop the ocubatterylogger.py script.

fullbatterychar.py script (10 May 2010 version)
#!/opt/tardec/bin/python
import aware
import aware.rf
from time import sleep
import time
import socket

Author: Matthew Skalny
Description: This is a script designed to get battery, temperature,
and steering commands off the PackBot (aware 2 fastac). It uses
pub/sub on the robot, and then utilizes UDP packets sent back to
OCU to communicate the data to the logger.

def addData(currentData, value, isvalid):
 if isvalid == True:
 return currentData + str(value) + ","
 else:
 return currentData + 'Invalid' + ","

def getBatterySubData(sub):
 data = ''
 try:
 batteryValue = sub.getAny(True).resolve()
 # Extract the requried information from the batteries
 leftFrontBattery = batteryValue.find("LeftFront")
 leftRearBattery = batteryValue.find("LeftRear")

 # Get left front battery information
 leftFrontVolts = leftFrontBattery.volts.value.value
 data = addData(data, leftFrontVolts, leftFrontBattery.volts.value.grade.isValid()
== 1)
 leftFrontEnergy = leftFrontBattery.energy.value.value
 data = addData(data, leftFrontEnergy,
leftFrontBattery.energy.value.grade.isValid() == 1)
 leftFrontPower = leftFrontBattery.power.value.value
 data = addData(data, leftFrontPower, leftFrontBattery.power.value.grade.isValid()
== 1)
 leftFrontCellTemp = leftFrontBattery.cellTemperature.value
 data = addData(data, leftFrontCellTemp,
leftFrontBattery.cellTemperature.grade.isValid() == 1)

UNCLASSIFIED
Page 23 of 35

 # Get left rear battery information
 leftRearVolts = leftRearBattery.volts.value.value
 data = addData(data, leftRearVolts, leftRearBattery.volts.value.grade.isValid()
== 1)
 leftRearEnergy = leftRearBattery.energy.value.value
 data = addData(data, leftRearEnergy, leftRearBattery.energy.value.grade.isValid()
== 1)
 leftRearPower = leftRearBattery.power.value.value
 data = addData(data, leftRearPower, leftRearBattery.power.value.grade.isValid()
== 1)
 leftRearCellTemp = leftRearBattery.cellTemperature.value
 data = addData(data, leftRearCellTemp,
leftRearBattery.cellTemperature.grade.isValid() == 1)
 return data
 except Exception:
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 return data

def getOrientationSubData(sub):
 data = ''
 try:
 # Get the roll/pitch/yaw information
 orientationValue = sub.getAny(True).resolve()
 valid = sub.isValidValue()
 hpr = orientationValue.getHPR()
 heading = hpr.heading
 data = addData(data, heading, valid)
 pitch = hpr.pitch
 data = addData(data, pitch, valid)
 roll = hpr.roll
 data = addData(data, roll, valid)
 return data
 except Exception:
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 return data

def getCommandSubData(sub):
 data = ''
 try:
 # Get the translate and rotate information (translate from x, rotate theta)
 commandValue = sub.getAny(True).resolve()
 valid = sub.isValidValue()
 translate = commandValue.find("X").velocity
 data = addData(data, translate, valid)
 xposition = commandValue.find("X").position
 data = addData(data, xposition, valid)
 yposition = commandValue.find("Y").position
 data = addData(data, yposition, valid)
 rotate = commandValue.find("Theta").velocity
 data = addData(data, rotate, valid)
 return data

UNCLASSIFIED
Page 24 of 35

 except Exception:
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 data = addData(data, "N/A", True)
 return data

def getMotorVoltsSubData(sub):
 try:
 # Get the motor volts
 motorVoltsValue = sub.getAny(True).resolve()
 cam = motorVoltsValue.find("CAM")
 flipper = motorVoltsValue.find("Flipper")
 sam = motorVoltsValue.find("SAM")
 tracks = motorVoltsValue.find("Tracks")
 tracksVolts = tracks.value.value
 flipperVolts = flipper.value.value
 samVolts = sam.value.value
 camVolts = cam.value.value
 data = str(camVolts) + "," + str(flipperVolts) + "," + str(samVolts)
 data += "," + str(tracksVolts)
 return data
 except Exception:
 data = ("N/A" + "," + "N/A" + "," + "N/A" + "," + "N/A")
 return data

def getMotorCurrentsSubData(sub):
 try:
 motorCurrentsValue = sub.getAny(True).resolve()
 trackLeft = motorCurrentsValue.find("Track Left")
 trackRight = motorCurrentsValue.find("Track Right")
 trackLeftCurrent = trackLeft.value.value
 trackRightCurrent = trackRight.value.value
 data = str(trackLeftCurrent) + "," + str(trackRightCurrent)
 return data
 except Exception:
 data = ("N/A" + "," + "N/A")
 return data

def createSub(subName, subType):
 sub = aware.Subscription.newInstance(subName, subType)
 return sub

#===
MAIN SCRIPT
#===

create the one and only aware2 module
batteryMod = aware.Module.instance()
batteryMod.init(["-name", "BatteryCharacterization"])

Constants for subscription types and names.
BATTERY_SUB_TYPE = "aware::rf::MultiBatteryState"
ORIENTATION_SUB_TYPE = "aware::rf::CompassData"
COMMAND_SUB_TYPE = "aware::rf::MultiAxisState"
MOTOR_VOLTS_SUB_TYPE = "aware::rf::MultiFloatState"
MOTOR_CURRENTS_SUB_TYPE = "aware::rf::MultiFloatState"

BATTERY_SUB_ALIAS = "/chassis/batteries"
ORIENTATION_SUB_ALIAS = "/chassis/orientation"
COMMAND_SUB_ALIAS = "/chassis/odometry"

UNCLASSIFIED
Page 25 of 35

MOTOR_VOLTS_SUB_ALIAS = "/combinedMotion/motorVolts"
MOTOR_CURRENTS_SUB_ALIAS = "/combinedMotion/motorCurrents"

Other constants
SLEEP_TIME_SEC = 0.25

Create local subscriptions
batterySub = createSub("batterySub", BATTERY_SUB_TYPE)
orientationSub = createSub("orientationSub", ORIENTATION_SUB_TYPE)
commandSub = createSub("commandSub", COMMAND_SUB_TYPE)
motorVoltsSub = createSub("motorVoltsSub", MOTOR_VOLTS_SUB_TYPE)
motorCurrentsSub = createSub("motorCurrentsSub", MOTOR_CURRENTS_SUB_TYPE)

Insert the subscription into the module
batteryMod.insert(batterySub)
batteryMod.insert(orientationSub)
batteryMod.insert(commandSub)
batteryMod.insert(motorVoltsSub)
batteryMod.insert(motorCurrentsSub)

Set Subscriptions usable
batterySub.setUsable()
orientationSub.setUsable()
commandSub.setUsable()
motorVoltsSub.setUsable()
motorCurrentsSub.setUsable()

Connect the subscriptions
batterySub.connect(BATTERY_SUB_ALIAS)
orientationSub.connect(ORIENTATION_SUB_ALIAS)
commandSub.connect(COMMAND_SUB_ALIAS)
motorVoltsSub.connect(MOTOR_VOLTS_SUB_ALIAS)
motorCurrentsSub.connect(MOTOR_CURRENTS_SUB_ALIAS)

Create socket for sending, including defines for send address and port
TARGET_IP = "172.17.168.106"
#TARGET_IP = "172.16.85.200"
TARGET_PORT = 20000
sendSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

Enter the to record data and send it over the network (UDP)
recordData = True
iterations = 720000
while recordData == True:
 # Print off the data we are packing.
 # lf (volts energy power temp), lr(volts energy power temp)
 # heading pitch roll translate rotate1
 dataTime = time.time()
 data = str(dataTime) + "," + getBatterySubData(batterySub)
 data += getOrientationSubData(orientationSub)
 data += getCommandSubData(commandSub)
 data += getMotorVoltsSubData(motorVoltsSub) + ","
 data += getMotorCurrentsSubData(motorCurrentsSub)

 # Pack the data for transmission
 # First run - just use an already formatted csv string and send it
 # Send the data over UDP
 sendSocket.sendto(data, (TARGET_IP, TARGET_PORT))

 # Sleep .25 seconds - send 4 times per second
 time.sleep(SLEEP_TIME_SEC)

UNCLASSIFIED
Page 26 of 35

 iterations-=1
 if iterations == 0:
 recordData = False

sendSocket.close()

ocubatterylogger.py script (10 May 2010 version)
#!/opt/tardec/bin/python
from __future__ import with_statement
from time import sleep
import time
import socket
import threading

Author: Matthew Skalny
Description: This is a script designed to receive a csv line over UDP from
a battery logger residing on the PackBot FasTac. This logger simply
listens for incoming messages on the specified port until it receives one,
which it then writes directly to a file specified as a new line.

class OcuBatteryLogger (threading.Thread):
 def __init__(self):
 threading.Thread.__init__(self)
 self.LISTEN_PORT = 20000
 self.LISTEN_IP = ""

 self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 self.sock.bind((self.LISTEN_IP, self.LISTEN_PORT))
 self.sock.setblocking(False)

 self.continueLogging = True

 # Lock for starting/stopping thread
 self.lock = threading.Lock()

 # This function is a function that will create a new file for storing
 # csv formatted data. The file is placed in the specified directory
 # and is guaranteed a unique name by using the current time from the
 # epoch within the file name. This function should be called every time
 # it is desired to start a new logging session.
 def recordData(self):
 timeForFile = time.time()
 filename = ('/home/tardec/battery-' + time.asctime() + '.csv')

 with open(filename, 'w') as f:
 while True:
 self.lock.acquire()
 if self.continueLogging == False:
 self.lock.release()
 return
 self.lock.release()
 try:
 data, addr = self.sock.recvfrom(4096)
 # write the data to the file
 f.write(data + '\n')
 time.sleep(0.05)
 except Exception:
 time.sleep(0.05)

 def stop(self):
 self.lock.acquire()

UNCLASSIFIED
Page 27 of 35

 self.continueLogging = False
 self.lock.release()

 # run function - required for threads, will run the logging thread using
 # record data. Quits when self.continueLogging is false.
 def run(self):
 self.recordData()
 self.sock.close()

Data Logging Rate

The 510 FasTac chassis will log data at a rate of 0.25 Hz (once every 4 seconds) by default. To log data at a
faster rate, the following process can be used:
(Line numbers and paths could vary depending on the version of software on the platform.)

First, change the speed at which the ChassisMonitor thread runs

On line 348 in file
/opt/irobot/bin/python/site-package/PackBotChassis/scripts/chassisDevices.py you will see some code like this:
 self.addThread(
 aware.PeriodicThread.narrow(
 self.chassisMonitor.get("PollThread")))

Add a line that looks like this right under it

aware.PeriodicThread.narrow(self.chassisMonitor.get("PollThread")).setPeriod(aware.Duration(1
.0))

Change the duration of the thread period, in seconds, to your desired value. For this testing, a value of 0.25 was
used. Running it too fast could have negative impacts on the rest of the system.

Now, change the data thread speed. Lines 151 - 154 of
opt/irobot/lib/python2.5/site-packages/PackBotHardwareProfile/combinedMotion/chassisEodMotion.py

 self.pubthread.connect('Action', self.pubgrp.get('ActionIF'))

 pt =
aware.PeriodicThread.narrow(self.pubthread.get('PeriodicThread'))
 pt.setPeriod(aware.Duration(4.0))
 pt.setPolicy(aware.PeriodicThreadPolicy.AS_AVAILABLE)

 self.addThread(pt)

Change line 153 to a duration smaller than 4.0, in seconds. For this testing, a value of 0.25 was used.

For FasTac, the path is the same but the file is chassisFasTacMotion.py, and the line number is 159.

UNCLASSIFIED
Page 28 of 35

APPENDIX D. SAMPLE TEST SHEET

Test Name

Date

LeftFront
Batt S/N

Time of Start

LeftRear
Batt S/N

Time End

Test Run #

Robot ID

Aware 2.0
Version

OCU S/N

Speed

Standoff

Test Plan Small_robot_mission_profiles_V09

General
Observations

File Name

Comments

Pea Gravel

Sand
Crushed

Concrete

Hill
Obstacle

Course

Manipulator

UNCLASSIFIED
Page 29 of 35

APPENDIX E. CSV DATA FILE PROCESSING MACRO
This is Version 06 of the CSV Battery Testing MS Excel macro, written in Visual Basic.

Attribute VB_Name = "Module1"
Sub ProcessBatt_CSVFile()
Attribute ProcessBatt_CSVFile.VB_Description = "Processes csv files captured during battery field testing. \nWritten: 05-17-2010\nUpdated: 05-17-2010\nTy
Valascho"
Attribute ProcessBatt_CSVFile.VB_ProcData.VB_Invoke_Func = "p\n14"
' Version 06
'
' ProcessBatt_CSVFile Macro
' Processes csv files captured during battery field testing.
' Written: 05-17-2010
' Updated: 07-22-2010
' Ty Valascho
'
'

 Dim MANIPULATOR_TEST
 ' The manipulator test does not have any movement (of the platform)
 ' so the calculations are different that the other tests.
 MANIPULATOR_TEST = False

 Dim Msg, Style, Title, Help, Ctxt, Response, MyString
 Msg = "Is this file from a manipulator test?" + Chr(13) + "**The manipulator test does not move the platform," + Chr(13) + "and the calculations are
performed differently than the other tests.**" ' Define message.
 Style = vbYesNo ' Define buttons.
 Title = "Test Type" ' Define title.
 Response = MsgBox(Msg, Style, Title)
 If Response = vbYes Then ' User chose Yes.
 MANIPULATOR_TEST = True
 Else ' User chose No.
 MANIPULATOR_TEST = False
 End If

 Application.ScreenUpdating = False
 Rows("1:4").Select
 Selection.Insert Shift:=xlDown, CopyOrigin:=xlFormatFromLeftOrAbove
 Columns("B:B").Select
 Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatFromLeftOrAbove

 Range("B1").Select
 ActiveCell.FormulaR1C1 = "Total Time (seconds)"
 Range("B2").Select
 ActiveCell.FormulaR1C1 = "Movement cal (m)"
 Range("C2").Select
 ActiveCell.FormulaR1C1 = 0.02

 Range("A4").Select
 ActiveCell.FormulaR1C1 = "Time (seconds)"
 Range("B4").Select
 ActiveCell.FormulaR1C1 = "Elapsed Time (sec)"
 Range("C4").Select
 ActiveCell.FormulaR1C1 = "LF Voltage (v)"
 Range("D4").Select
 ActiveCell.FormulaR1C1 = "LF Energy (j)"
 Range("E4").Select
 ActiveCell.FormulaR1C1 = "LF Power (w)"
 Range("F4").Select
 ActiveCell.FormulaR1C1 = "LF Temp (C)"
 Range("G4").Select
 ActiveCell.FormulaR1C1 = "LR Voltage (v)"
 Range("H4").Select
 ActiveCell.FormulaR1C1 = "LR Energy (j)"
 Range("I4").Select
 ActiveCell.FormulaR1C1 = "LR Power (w)"
 Range("J4").Select
 ActiveCell.FormulaR1C1 = "LR Temp (C)"
 Range("K4").Select
 ActiveCell.FormulaR1C1 = "Heading"
 Range("L4").Select
 ActiveCell.FormulaR1C1 = "Pitch"

UNCLASSIFIED
Page 30 of 35

 Range("M4").Select
 ActiveCell.FormulaR1C1 = "Roll"
 Range("N4").Select
 ActiveCell.FormulaR1C1 = "Translate Command"
 Range("O4").Select
 ActiveCell.FormulaR1C1 = "Xposition"
 Range("P4").Select
 ActiveCell.FormulaR1C1 = "Yposition"
 Range("Q4").Select
 ActiveCell.FormulaR1C1 = "Rotate"
 Range("R4").Select
 ActiveCell.FormulaR1C1 = "CAM Mtr Volts (v)"
 Range("S4").Select
 ActiveCell.FormulaR1C1 = "Flipper Mtr Volts (v)"
 Range("T4").Select
 ActiveCell.FormulaR1C1 = "SAM Mtr Volts (v)"
 Range("U4").Select
 ActiveCell.FormulaR1C1 = "Track Mtr Volts (v)"
 Range("V4").Select
 ActiveCell.FormulaR1C1 = "Left Track Curr (A)"
 Range("W4").Select
 ActiveCell.FormulaR1C1 = "Right Track Curr (A)"
 Range("X4").Select
 ActiveCell.FormulaR1C1 = "LF Curr Calculated (A) [P/v]"
 Range("Y4").Select
 ActiveCell.FormulaR1C1 = "LR Curr Calculated (A) [P/v]"
 Range("Z4").Select
 ActiveCell.FormulaR1C1 = "LF+LR Curr (A)"
 Range("AA4").Select
 ActiveCell.FormulaR1C1 = "LTrack+Rtrack Curr (A)"
 Range("AB4").Select
 ActiveCell.FormulaR1C1 = "System Voltage (V)"
 Range("AC4").Select
 ActiveCell.FormulaR1C1 = "Movement Bit"
 Range("AD4").Select

 If (MANIPULATOR_TEST = False) Then
 ActiveCell.FormulaR1C1 = "Current used for movement (A)"
 Range("AE4").Select
 ActiveCell.FormulaR1C1 = "Steady State Bit (V)"
 Range("AF4").Select
 ActiveCell.FormulaR1C1 = "Non-Movement Current (A)"
 Range("AF1").Select
 ActiveCell.FormulaR1C1 = "Avg steady-state current (A)"
 End If 'End MANIPULATOR_TEST = False

 Range("AD1").Select
 ActiveCell.FormulaR1C1 = "Sum (int)"
 Range("AE1").Select
 ActiveCell.FormulaR1C1 = "Avg motion current (A)"

 Range("B5").Select
 ActiveCell.FormulaR1C1 = 0

 Dim Check, Counter
' Time (seconds)
' Copy formulas to column B, starting from the bottom and going up
 Range("A4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select

 ActiveCell.FormulaR1C1 = "=RC[-1]-R5C[-1]"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=RC[-1]-R5C[-1]"
 Else
 Check = False
 End If

UNCLASSIFIED
Page 31 of 35

 Loop

' LF Curr Calculated (A) [P/v]
' Copy formulas to column X, starting from the bottom and going up
 Range("W4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-19]=""Invalid"",RC[-21]=""Invalid""),0,RC[-19]/RC[-21])"
 ' ActiveCell.FormulaR1C1 = "=RC[-19]/RC[-21]"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-19]=""Invalid"",RC[-21]=""Invalid""),0,RC[-19]/RC[-21])"
 Else
 Check = False
 End If
 Loop

' LR Curr Calculated (A) [P/v]
' Copy formulas to column Y, starting from the bottom and going up
 Range("X4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
' ActiveCell.FormulaR1C1 = "=RC[-16]/RC[-18]"
 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-16]=""Invalid"",RC[-18]=""Invalid""),0,RC[-16]/RC[-18])"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-16]=""Invalid"",RC[-18]=""Invalid""),0,RC[-16]/RC[-18])"
 Else
 Check = False
 End If
 Loop

' LF+LR Curr (A)
' Copy formulas to column Z, starting from the bottom and going up
 Range("Y4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=RC[-1]+RC[-2]"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=RC[-1]+RC[-2]"
 Else
 Check = False
 End If
 Loop

' LTrack+Rtrack Curr (A)
' Copy formulas to column AA, starting from the bottom and going up
 Range("Z4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select

 ActiveCell.FormulaR1C1 = "=ABS(RC[-5])+ABS(RC[-4])"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.

UNCLASSIFIED
Page 32 of 35

 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=ABS(RC[-5])+ABS(RC[-4])"
 Else
 Check = False
 End If
 Loop

' System Voltage (V)
' Copy formulas to column AB, starting from the bottom and going up
 Range("AA4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select

 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-21]=""Invalid"",RC[-21]=26),RC[-25],IF(OR(RC[-25]=""Invalid"",RC[-25]=26),RC[-21],MAX(RC[-25],RC[-21])))"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=IF(OR(RC[-21]=""Invalid"",RC[-21]=26),RC[-25],IF(OR(RC[-25]=""Invalid"",RC[-25]=26),RC[-21],MAX(RC[-25],RC[-21])))"
 Else
 Check = False
 End If
 Loop

' Movement Bit: Goes TRUE when the platform is moving
' Copy formulas to column AC, starting from the bottom and going up
 Range("AB4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=IF(AND(ABS(RC[-13]-R[-1]C[-13])<R2C3,ABS(RC[-14]-R[-1]C[-14])<R2C3),0,1)"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=IF(AND(ABS(RC[-13]-R[-1]C[-13])<R2C3,ABS(RC[-14]-R[-1]C[-14])<R2C3),0,1)"
 Else
 ActiveCell.Offset(1, 0).Select
 ActiveCell.Value = 0
 Check = False
 End If
 Loop

 If (MANIPULATOR_TEST = False) Then

 ' Current used for movement: the amount of current used for movement only
 ' (when the movement bit is true)
 ' Copy formulas to column AD, starting from the bottom and going up
 Range("AC4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-3]"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-3]"
 Else
 ActiveCell.Offset(1, 0).Select

UNCLASSIFIED
Page 33 of 35

 ActiveCell.Value = 0
 Check = False
 End If
 Loop

 ' Steady State Bit: Indicates the platform is not moving and the current is less than 1.7 amps
 ' - this value is when the platform is just sitting there, doing nothing.
 ' Copy formulas to column AE, starting from the bottom and going up
 Range("AD4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=IF(AND(NOT(RC[-2]),RC[-4]<1.7),1,0)" '=IF(AND(NOT(AC5),Z5<1.7),1,0)
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=IF(AND(NOT(RC[-2]),RC[-4]<1.7),1,0)"
 Else
 ActiveCell.Offset(1, 0).Select
 ActiveCell.Value = 0
 Check = False
 End If
 Loop

 ' Non-Movement Current: Amount of current used when platform is idle.
 ' Copy formulas to column AF, starting from the bottom and going up
 Range("AE4").End(xlDown).Select
 ActiveCell.Offset(0, 1).Select
 ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-5]"
 Check = True
 Counter = 0 ' Initialize variables.
 Do While Check = True
 Counter = Counter + 1 ' Increment Counter.
 If Counter > 10000 Then ' If condition is True.
 Check = False ' Set value of flag to False.
 End If
 ActiveCell.Offset(-1, 0).Select
 If ActiveCell.Value = "" Then
 ActiveCell.FormulaR1C1 = "=RC[-1]*RC[-5]"
 Else
 ActiveCell.Offset(1, 0).Select
 ActiveCell.Value = 0
 Check = False
 End If
 Loop

 'Create Averages and summary values
 Range("AD5").End(xlDown).Select
 ActiveCell.Name = "End_Cell_Movement_Current"
 Range("AF5").End(xlDown).Select
 ActiveCell.Name = "End_Cell_Non_Movement_Current"

 Range("AD2").Select
 ActiveCell.FormulaR1C1 = "=SUM(R[3]C:End_Cell_Movement_Current)"
 Range("AE2").Select
 ActiveCell.FormulaR1C1 = "=AVERAGEIF(R[3]C[-1]:End_Cell_Movement_Current,""<>0"")"
 Range("AF2").Select
 ActiveCell.FormulaR1C1 = "=AVERAGEIF(R[3]C:End_Cell_Non_Movement_Current,""<>0"")"

 Range("AD2:AF2").Select
 Selection.Copy
 Range("AD3").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False

 ' Add total time of test
 Range("AC5").End(xlDown).Select
 ActiveCell.Name = "End_Cell_Movement_Bit"
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "=(SUM(R[4]C[26]:End_Cell_Movement_Bit))*.250"

UNCLASSIFIED
Page 34 of 35

 'End MANIPULATOR_TEST = False

 Else 'MANIPULATOR_TEST = True
 'Create Averages and summary values
 Range("Z5").End(xlDown).Select
 ActiveCell.Name = "End_Cell_LF_LR_Curr"

 Range("AD2").Select
 ActiveCell.FormulaR1C1 = "=SUM(R[3]C[-4]:End_Cell_LF_LR_Curr)"
 Range("AE2").Select
 ActiveCell.FormulaR1C1 = "=AVERAGE(R[3]C[-5]:End_Cell_LF_LR_Curr)"

 Range("AD2:AE2").Select
 Selection.Copy
 Range("AD3").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False

 ' Add total time of test
 Range("B5").End(xlDown).Select
 Selection.Copy
 Range("C1").Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False

 End If 'End MANIPULATOR_TEST = True

' Clean up, make pretty
 Range("C5").Select
 ActiveWindow.FreezePanes = True
 Rows("4:4").Select
 Selection.Font.Bold = True
 Range("B1").Select
 Selection.Font.Bold = True
 With Selection
 .HorizontalAlignment = xlRight
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With

'Create Graphs
' We don't know where the end of the columns are, so we must find the end
' and name it so we can select that range for the graphs

 Range("B4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_Elapsed_Time"

' Create Energy Consumption graph
' Version 06 removed this - energy consumption is so inaccurate,
' this graph is meaningless
' Range("D4").End(xlDown).Select
' ActiveCell.Name = "End_Cell_LF_Energy"
' Range("H4").End(xlDown).Select
' ActiveCell.Name = "End_Cell_LR_Energy"
' ActiveSheet.Shapes.AddChart.Select
' ActiveChart.ChartType = xlXYScatterLinesNoMarkers
' ActiveChart.SetSourceData Source:=Range("H4:End_Cell_LR_Energy, B4:End_Cell_Elapsed_Time")
' ActiveChart.SeriesCollection.Add Source:=Range("D4:End_Cell_LF_Energy"), Rowcol:=2, SeriesLabels:=True
' ActiveChart.Location Where:=xlLocationAsNewSheet, Name:= _
' "Energy Consumption"

' Create Current Consumption graph
' Sheets(1).Activate ' Go back to the spreadsheet
 Range("X4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_LF_Curr_Calculated"

UNCLASSIFIED
Page 35 of 35

 Range("Y4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_LR_Curr_Calculated"
 Range("Z4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_LF_LR_Curr"
 Range("AA4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_LTrack_Rtrack_Curr"
 Range("AC4").End(xlDown).Select
 ActiveCell.Name = "End_Cell_Movement_Bit"

 ActiveSheet.Shapes.AddChart.Select
 ActiveChart.ChartType = xlXYScatterLinesNoMarkers
 ActiveChart.SetSourceData Source:=Range("AC4:End_Cell_Movement_Bit, B4:End_Cell_Elapsed_Time") '"), Rowcol:=2, SeriesLabels:=True
 ActiveChart.SeriesCollection.Add Source:=Range("Z4:End_Cell_LF_LR_Curr"), Rowcol:=2, SeriesLabels:=True
 ActiveChart.SeriesCollection.Add Source:=Range("AA4:End_Cell_LTrack_Rtrack_Curr"), Rowcol:=2, SeriesLabels:=True

 ActiveChart.Location Where:=xlLocationAsNewSheet, Name:= _
 "Current Consumption"

 Application.ScreenUpdating = True

 Pathname = ActiveWorkbook.Path
 Filename = ActiveWorkbook.Name
 ' Remove file extension
 Filename = Left(Filename, (Len(Filename) - 4))
 Filename = Filename + " processed.xlsm"
 ActiveWorkbook.SaveAs Filename:= _
 (Pathname + "\" + Filename) _
 , FileFormat:=xlOpenXMLWorkbookMacroEnabled, CreateBackup:=False
' Application.Goto Reference:="PERSONAL.XLSB!save_file"

End Sub

	1. INTRODUCTION
	2. PURPOSE
	3. METHODOLOGY
	4. ANALYSIS OF THE DATA
	5. RESULTS
	APPENDIX A. MISSION 1 FROM “SMALL ROBOT MISSION PROFILES V09”
	APPENDIX B. DETAILED TESTING PROCEDURE FOR IROBOT FASTAC 510
	APPENDIX C. PYTHON SCRIPTS AND SETUP PROCEDURE FOR LOGGING DATA USING IROBOT AWARE 2.0
	APPENDIX D. SAMPLE TEST SHEET
	APPENDIX E. CSV DATA FILE PROCESSING MACRO

